Tuesday, 16 April 2013

AVIONICS ENGINEERING

 

 

 

 

 

 

Avionics are the electronic systems used on aircraft, artificial satellites, and spacecraft.

Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.

The term avionics is a portmanteau of the words aviation and electronics.

The term avionics was coined by journalist Philip J. Klass as a portmanteau of aviation electronics.[1][2] Many modern avionics have their origins in World War II wartime developments. For example, autopilot systems that are prolific today were started to help bomber planes fly steadily enough to hit precision targets from high altitudes.[3] Famously, radar was developed in the UK, Germany, and the United States during the same period.[4] Modern avionics is a substantial portion of military aircraft spending. Aircraft like the F‑15E and the now retired F‑14 have roughly 80 percent of their budget spent on avionics. Most modern helicopters now have budget splits of 60/40 in favour of avionics.[citation needed]

The civilian market has also seen a growth in cost of avionics. Flight control systems (fly-by-wire) and new navigation needs brought on by tighter airspaces, have pushed up development costs. The major change has been the recent boom in consumer flying. As more people begin to use planes as their primary method of transportation, more elaborate methods of controlling aircraft safely in these high restrictive airspaces have been invented

Avionics plays a heavy role in modernization initiatives like the Federal Aviation Administration's (FAA) Next Generation Air Transportation System project in the United States and the Single European Sky ATM Research (SESAR) initiative in Europe. The Joint Planning and Development Office put forth a roadmap for avionics in six areas:[5]

  • Published Routes and Procedures – Improved navigation and routing

  • Negotiated Trajectories – Adding data communications to create preferred routes dynamically

  • Delegated Separation – Enhanced situational awareness in the air and on the ground

  • LowVisibility/CeilingApproach/Departure – Allowing operations with weather constraints with less ground infrastructure

  • Surface Operations – To increase safety in approach and departure

  • ATM Efficiencies – Improving the ATM process

Founded in 1957, the Aircraft Electronics Association (AEA) represents more than 1,300 member companies, including government-certified international repair stations specializing in maintenance, repair and installation of avionics and electronic systems in general aviation aircraft. The AEA membership also includes manufacturers of avionics equipment, instrument repair facilities, instrument manufacturers, airframe manufacturers, test equipment manufacturers, major distributors, engineers and educational institutions



 

 

 

 

No comments: